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What is a Sterile Neutrino?

= _ Measurements at
= |1 /2{’ LEP tell us that the
:. | ALEPH | 3¢—"12° couples to only 3
o 30T DELPHI light neutrinos
L3 1/°\)
- OPAL
20 | )

i f*
|+ average measurements, |/
error bars increased //

by factor 10 "/*’

Alex Himmel cm



What is a Sterile Neutrino?

3 neutrinos = 2 mass splittings
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What is a Sterile Neutrino?
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What is a Sterile Neutrino?
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so does not interact weakly, i.e. sterile
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What is a Sterile Neutrino?
PMNS

U el U e2 UeS Ue4
Ui Up2 Uus Upa
UT 1 UTZ UTS UT4
Us 1 U82 U83 Us4
* One more neutrino adds 7 complex matrix elements

— but not all independent.

« 1 Am? 3 “angles”, 2 phases - varying parameterizations
— |Uul% |Uu4|2: [Usl? or 61y, 054, 634

* One more neutrino adds 8 more parameters
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Evidence of Sterile Neutrinos
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Evidence of Sterile Neutrinos
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What can Super-K tell us?

* 11 years of atmospheric neutrino data.
— Covering a wide range of L and E

* Jtis most useful because of what itis
not sensitive to:

50 kT Water

The size of the sterile : Oscillations
mass splitting appear “fast”

>13,000 PMTs

. 3+1 and 3+N
The number of sterile
_ =) models look the i
neutrinos B R —iblass
same - N
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What can Super-K tell us?

* Short-baseline-related: |U M4|2 T
— Driven by new Am? i :
— Creates fast oscillations across a

wide range of v, samples

» Atmospheric/long-baseline: |U_,|? 1 kT=Water
— Accessible only at long distances
— Oscillations into v, instead of v, -{ >13,000 PMTs
— Introduces a new matter effect .
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Super-K Sterile Model

* A fully generic sterile model is difficult

computationally

— Cannot calculate both active (v,) and sterile (NC)
matter effects together

* So, we need to perform 2 different fits:

Fit for |UM4|2 Fit for |U_,|*
— v, matter effects only — NC matter effects only
— Most accurate |U ,|*limit — Required for |U_,|*

— No |U_,|? limit — Over-constrains |U |
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SK Analysis: Zenith Angle A -------- —~ -~++

v, disappearance —+— _
* Look for change in flavor Data
content vs. L AT 3y Best Fit |
' No Oscillations -
* Bin by angle and separate Mu1t1 GeV - 11ke
uande 4
— isolate oscillations ! ++

— other samples control | _
systematics 5ol |
T |

« The original SK analysis was e
simple: up/down, u/e Multl GeV e-like

fl'-bﬁll
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Same philosophy,
more samples

Most samples binned
in angle & energy .




Fully Contained Partially

Sub-GeV Multi-GeV Contained Up-going K
A
TN TN TN
» .-' .
100’s of MeV. Few GeV m
u-like, e-like (v,/v,), NCr’-like Long tracks - all u-like
Low energy -> Uncontained ->
Poor cosf, resolution Poor E resolution
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Oscillogram:
Standard 3v
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Oscillogram:

U] Fit

P(v,tov,)
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Fit for

Sub-GeV p-like 1-dcy e PC Through

..............................................................
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* Signature is extra disappearance in all ¢ samples
— Correlated change at all energies, all cos6,

— Sensitivity limited by u/e flux uncertainty

Need to do 2 fits since we cannot calculate
v, and NC matter effects simultaneously

0
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Fit for \UM\Z

U,,|?<0.023at90% CL. ~ 10°

U, < 0.034 at 99% C.L. 0

As with similar -
experiments, no sterile- g 1

<
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- (preliminary) oo
S| S 3
10 F ---99%CLL.  ~Boop Y
[ —90% C.L. SK
10°—— ol
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Need to do 2 fits since we cannot calculate
v, and NC matter effects simultaneously

PRD86, 052009 (2012)
PRL52, 1384 (1984)
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Fit for |U,|°

2 __ :
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Need to do 2 fits since we cannot calculate
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O S Ci I I O g ram: FC Sub-GeV | Multi-GeV

| Ur4 | 2 Fit PC, Stop u
Through-going u
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Fit for | Uy | % with 10,17

PC Through Stopping Up 1 Non-showering Up L
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* Matter effects create shape distortion in PC/Up-u
zenith distribution

— Less disappearance in most upward bins, still have extra
disappearance in downward bins

Need to do 2 fits since we cannot calculate
v, and NC matter effects simultaneously
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Fit for | Uy | % with 10,17

U_,|2 < 0.28 at 99% C.L.

Favors u to T oscillations
overutos

Lack of sterile matter effects
places a strong constraint

— Note, |U,,|* is over-
constrained in this fit

2!—’

1

'Recent
Global Fit

|

dN+SAHD

— 99% C.L.
---90% C.L.

SOUIN

/ Excluded

SK

-1
10 1
U F
ud
All comparisons from:
ArXiv:1303.3011

22



Conclusions

* Atmospheric neutrinos provide a useful tool to
study sterile oscillations
— Wide range of L/E

— Measurement independent of Am? and N

sterlle

>1

* No evidence of sterile neutrinos seen

— No sterile-driven v, disappearance, consistent with
other short- and long-baseline measurements

— u to s oscillations strongly disfavored by the lack of
sterile matter effects
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3+N = 3+1 for Super K

Pup = (1 — ‘Uu4|2)2

0 4
L Z Uil

i>4

* The first sterile term:
— Controls extra disappearance

— [s the same for any N, ..

e The second sterile term:
— Fills in the minima

— Varies for N,

* QOur experiment is much more
sensitive to first term —
— Beam experiments, focusing on ;1
: : : ) 10 1 10
the first oscillation dip, are Energy (GeV)
sensitive to the second term.

10?
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No Matter in 3v

* Atrightare 2 T

sensitivities from the
2+1 fit

* The dashed is the
normal fit, solid has ?@110—2_
sterile matter effects :
arbitrarily turned off

* |U,4l* limitis
unaffected - it is 108

independent of the o 01 |8‘2|2 03 04
sterile matter effects o
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. 2 (" )
When is Am<,, no longer “large”?

 When do the oscillations no longer appear fast?

— This will be the worst at short L’s and large E’s, so lets focus on Up-u
with cos 6, > -0.1

— Loop through all these events and calculate the mean of sin?(Am?L/4E)
for various Am?

* Doing this, the approximation is valid down to ~0.8 eV?

0.51

©
%)
T T

~ Up-y, cos zenith >

1% error on <sin 2>

01

-
o
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. 2 (" )
When is Am<,, no longer “large”?

* However, the limit on |U ,|? is driven by the low |U_,|* region.
— In this region, the dominant samples are Sub-GeV muons
— Almost no power comes from Up-u

* For these samples, the “large” assumption is ~always valid so |U ,|*
limit really is a vertical line in Am? to a good approximation

IIllIIIIl

N
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N
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Our Matter Effect Model
* The u to u probability is fairly simple:
Puy = (1—dy)?|S2)* + d;

* Get |S,,|* by diagonalizing the sum of the

vacuum and matter Hamiltonians:

H® = B + B

B Am%l — cos 2053  sin 26053 4 GrN, ’ﬁ32‘2 ﬁ§2ﬁ33
B 4 F sin 2(923 COS 2923 \/i USQU;S |U53|2
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Our Matter Effect Model

* This gives us a ~familiar matter-effect
probability

S99|? = 1 — sin?(20,,) sin®(f, L)

A2, + A2 + 2A39 A (cos(2623) cos(20,) + sin(26053) sin(26y))

BT =+1, T
- Agy sin(26,3) + Ag sin(26 Aszz = A,
<in zem _ 32 23f S s 46? N
m As — 4 FiV¥n
2v/2
_ 2\/d,dds
sin 260, =
(1 —dy)
cos 20, = dr — dyds
(i—d,) |*




Pup =

P, =

P, =

Our Matter Effect Model
(1 —dy)?[Sa2]* + d,

(1—d,)(1—d)+ (du(1—d,)
—dy(1+d,)) |Se2)? — /d,dyd, (523552 +s;3522)

(T —du)(1 - SIEk
—+ d d-dg 523322 + 523522

Sa9|? = 1 — sin?(26,,) sin®(f,, L)
(§23§;2 + 523522> = —2 Sln(2(9m) COS(29m) sin (me)
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Our Parameters: |U ,|?

Amount mixing between v, and the sterile mass state v,
Primary effect is extra v, disappearance at all path lengths

[s directly comparable to SBL. measurements of v,
disappearance (6,,) and indirectly to the MB/LSND
appearance signal (6,,)

With more sterile neutrinos, becomes a more generic
parameter d,, but out limit is still applicable:

1 —+v1—-4A
2 Y,
A= (1 - ‘U/A‘Q - |UM5|2 - |Uu6|2)(‘Uu4‘2 + |Uu5|2 + |Uu6|2)
HUua U > 4+ U pa 21Ul + U5 || U | -

d, =

31
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Our Parameters: |U_, |2

Amount mixing between v_ and the sterile mass state v,

Controls v ->v_vs.v ->v fraction

— Previous SK sterile measurements have implicitly limited this
parameter

This parameter ~scales the size of sterile-NC matter effects
Also responsible of NC disappearance over long baselines

Private to long-baseline and atmospheric measurements

— But still interesting for understanding atmospheric oscillations
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